搜索
搜索
二分查找
二分查找是一种基于分治策略的高效搜索算法。它利用数据的有序性,每轮减少一半搜索范围,直至找到目标元素或搜索区间为空为止。
Question:
给定一个长度为n的数组
nums
,元素按从小到大的顺序排列,数组不包含重复元素。请查找并返回元素target
在该数组中的索引。若数组不包含该元素,则返回 −1
双闭区间
如下图所示,我们先初始化指针i=0 和 j=n−1 ,分别指向数组首元素和尾元素,代表搜索区间 [0,n−1] 。请注意,中括号表示闭区间,其包含边界值本身。
接下来,循环执行以下两步。
计算中点索引 m=⌊(i+j)/2⌋ ,其中 ⌊⌋ 表示向下取整操作。
判断
nums[m]
和target
的大小关系,分为以下三种情况。当
nums[m] < target
时,说明target
在区间 [m+1,j] 中,因此执行 i=m+1 。当
nums[m] > target
时,说明target
在区间 [i,m−1] 中,因此执行 j=m−1 。当
nums[m] = target
时,说明找到target
,因此返回索引 m 。
若数组不包含目标元素,搜索区间最终会缩小为空。此时返回 −1 。
值得注意的是,由于 i 和 j 都是 int
类型,因此 i+j 可能会超出 int
类型的取值范围。为了避免大数越界,我们通常采用公式 m=⌊i+(j−i)/2⌋ 来计算中点。
Python:
1 | def binary_search(nums: list[int], target: int) -> int: |
Go:
1 | /* 二分查找(双闭区间) */ |
时间复杂度 O(logn) :在二分循环中,区间每轮缩小一半,循环次数为 log₂n 。
空间复杂度 O(1) :指针 i 和 j 使用常数大小空间。
左开右闭
除了上述的双闭区间外,常见的区间表示还有“左闭右开”区间,定义为 [0,n) ,即左边界包含自身,右边界不包含自身。在该表示下,区间 [i,j] 在 i=j 时为空。可以基于该表示实现具有相同功能的二分查找算法。
Python:
1 | def binary_search_lcro(nums: list[int], target: int) -> int: |
Go:
1 | /* 二分查找(左闭右开) */ |
在两种区间表示下,二分查找算法的初始化、循环条件和缩小区间操作皆有所不同。由于“双闭区间”表示中的左右边界都被定义为闭区间,因此指针 i 和 j 缩小区间操作也是对称的。这样更不容易出错,因此一般建议采用“双闭区间”的写法。
优缺点
二分查找在时间和空间方面都有较好的性能。
- 二分查找的时间效率高。在大数据量下,对数阶的时间复杂度具有显著优势。
- 二分查找无须额外空间。相较于需要借助额外空间的搜索算法(例如哈希查找),二分查找更加节省空间。
然而,二分查找并非适用于所有情况,主要有以下原因。
- 二分查找仅适用于有序数据。若输入数据无序,为了使用二分查找而专门进行排序,得不偿失。因为排序算法的时间复杂度通常为 O(nlogn) ,比线性查找和二分查找都更高。对于频繁插入元素的场景,为保持数组有序性,需要将元素插入到特定位置,时间复杂度为 O(n) ,也是非常昂贵的。
- 二分查找仅适用于数组。二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低,因此不适合应用在链表或基于链表实现的数据结构。
- 小数据量下,线性查找性能更佳。在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,当数据量 n 较小时,线性查找反而比二分查找更快。
二分查找插入点
二分查找不仅可用于搜索目标元素,还具有许多变种问题,比如搜索目标元素的插入位置。
无重复元素
Question
给定一个长度为 n 的有序数组
nums
和一个元素target
,数组不存在重复元素。现将target
插入到数组nums
中,并保持其有序性。若数组中已存在元素target
,则插入到其左方。请返回插入后target
在数组中的索引。
Python:
1 | def binary_search_insertion_simple(nums: list[int], target: int) -> int: |
Go:
1 | /* 二分查找插入点(无重复元素) */ |
有重复元素
假设数组中存在多个 target
,则普通二分查找只能返回其中一个 target
的索引,**而无法确定该元素的左边和右边还有多少 target
**。
题目要求将目标元素插入到最左边,所以我们需要查找数组中最左一个 target
的索引。
- 执行二分查找,得到任意一个
target
的索引,记为 k 。 - 从索引 k 开始,向左进行线性遍历,当找到最左边的
target
时返回。
此方法虽然可用,但其包含线性查找,因此时间复杂度为 O(n) 。当数组中存在很多重复的 target
时,该方法效率很低。现考虑拓展二分查找代码。整体流程保持不变,每轮先计算中点索引 m ,再判断 target
和 nums[m]
大小关系,分为以下几种情况。
- 当
nums[m] < target
或nums[m] > target
时,说明还没有找到target
,因此采用普通二分查找的缩小区间操作,从而使指针 i 和 i 向target
靠近。 - 当
nums[m] == target
时,说明小于target
的元素在区间 [i,m−1] 中,因此采用 j=m−1 来缩小区间,从而使指针 j 向小于target
的元素靠近。
循环完成后,i 指向最左边的 target
,j 指向首个小于 target
的元素,因此索引 i 就是插入点。
Python:
1 | def binary_search_insertion(nums: list[int], target: int) -> int: |
Go:
1 | /* 二分查找插入点(存在重复元素) */ |
二分查找边界
左边界
Question
给定一个长度为 n 的有序数组
nums
,数组可能包含重复元素。请返回数组中最左一个元素target
的索引。若数组中不包含该元素,则返回 −1 。
回忆二分查找插入点的方法,搜索完成后 i 指向最左一个 target
,因此查找插入点本质上是在查找最左一个 target
的索引。考虑通过查找插入点的函数实现查找左边界。请注意,数组中可能不包含 target
,这种情况可能导致以下两种结果。
- 插入点的索引 i 越界。
- 元素
nums[i]
与target
不相等。
当遇到以上两种情况时,直接返回 −1 即可。
为什么
i
可能会越界?
考虑一个例子:
假设我们有一个数组 nums = [1, 2, 3, 4, 5]
并且我们的目标值 target = 6
。使用上述的二分查找插入点方法,我们将会得到以下的过程:
- i=0, j=4, m=2, nums[m]=3, 3 < 6, 所以 i=m+1=3。
- i=3, j=4, m=3, nums[m]=4, 4 < 6, 所以 i=m+1=4。
- i=4, j=4, m=4, nums[m]=5, 5 < 6, 所以 i=m+1=5。
现在 i
指向了索引 5
,这是越界的,因为数组的最大索引是 4
。
Python:
1 | def binary_search_left_edge(nums: list[int], target: int) -> int: |
Go:
1 | /* 二分查找最左一个 target */ |
右边界
复用查找左边界
可以利用查找最左元素的函数来查找最右元素,具体方法为:将查找最右一个 target
转化为查找最左一个 target + 1
。如下图所示,查找完成后,指针 i 指向最左一个 target + 1
(如果存在),而 j 指向最右一个 target
,因此返回 j 即可。
请注意,返回的插入点是 i ,因此需要将其减 1 ,从而获得 j 。
Python:
1 | def binary_search_right_edge(nums: list[int], target: int) -> int: |
Go:
1 | /* 二分查找最右一个 target */ |
查找不存在元素
当数组不包含 target
时,最终 i 和 j 会分别指向首个大于、小于 target
的元素。可以构造一个数组中不存在的元素,用于查找左右边界。
- 查找最左一个
target
:可以转化为查找target - 0.5
,并返回指针 i 。 - 查找最右一个
target
:可以转化为查找target + 0.5
,并返回指针 j 。
- 给定数组不包含小数,这意味着我们无须关心如何处理相等的情况。
- 因为该方法引入了小数,所以需要将函数中的变量
target
改为浮点数类型。
哈希优化
在算法题中,常通过将线性查找替换为哈希查找来降低算法的时间复杂度。
Question
给定一个整数数组
nums
和一个目标元素target
,请在数组中搜索“和”为target
的两个元素,并返回它们的数组索引。返回任意一个解即可。
线性查找
直接遍历所有可能的组合。开启一个两层循环,在每轮中判断两个整数的和是否为 target
,若是则返回它们的索引。
Python:
1 | def two_sum_brute_force(nums: list[int], target: int) -> list[int]: |
Go:
1 | /* 方法一:暴力枚举 */ |
此方法的时间复杂度为 O(n^2) ,空间复杂度为 O(1) ,在大数据量下非常耗时。
哈希查找
考虑借助一个哈希表,键值对分别为数组元素和元素索引。循环遍历数组:
- 判断数字
target - nums[i]
是否在哈希表中,若是则直接返回这两个元素的索引。 - 将键值对
nums[i]
和索引i
添加进哈希表。
Python:
1 | def two_sum_hash_table(nums: list[int], target: int) -> list[int]: |
Go:
1 | /* 方法二:辅助哈希表 */ |
此方法通过哈希查找将时间复杂度从 O(n^2) 降低至 O(n) ,大幅提升运行效率。由于需要维护一个额外的哈希表,因此空间复杂度为 O(n) 。尽管如此,该方法的整体时空效率更为均衡,因此它是本题的最优解法。
搜索算法
搜索算法用于在数据结构(例如数组、链表、树或图)中搜索一个或一组满足特定条件的元素。
搜索算法可根据实现思路分为以下两类。
- 通过遍历数据结构来定位目标元素,例如数组、链表、树和图的遍历等。
- 利用数据组织结构或数据包含的先验信息,实现高效元素查找,例如二分查找、哈希查找和二叉搜索树查找等。
暴力搜索
暴力搜索通过遍历数据结构的每个元素来定位目标元素。
- “线性搜索”适用于数组和链表等线性数据结构。它从数据结构的一端开始,逐个访问元素,直到找到目标元素或到达另一端仍没有找到目标元素为止。
- “广度优先搜索”和“深度优先搜索”是图和树的两种遍历策略。广度优先搜索从初始节点开始逐层搜索,由近及远地访问各个节点。深度优先搜索是从初始节点开始,沿着一条路径走到头为止,再回溯并尝试其他路径,直到遍历完整个数据结构。
暴力搜索的优点是简单且通用性好,无须对数据做预处理和借助额外的数据结构。
然而,此类算法的时间复杂度为 O(n) ,其中 n 为元素数量,因此在数据量较大的情况下性能较差。
自适应搜索
自适应搜索利用数据的特有属性(例如有序性)来优化搜索过程,从而更高效地定位目标元素。
- “二分查找”利用数据的有序性实现高效查找,仅适用于数组。
- “哈希查找”利用哈希表将搜索数据和目标数据建立为键值对映射,从而实现查询操作。
- “树查找”在特定的树结构(例如二叉搜索树)中,基于比较节点值来快速排除节点,从而定位目标元素。
此类算法的优点是效率高,时间复杂度可达到 O(logn) 甚至 O(1) 。
然而,使用这些算法往往需要对数据进行预处理。例如,二分查找需要预先对数组进行排序,哈希查找和树查找都需要借助额外的数据结构,维护这些数据结构也需要额外的时间和空间开支。
搜索算法选取
给定大小为 n 的一组数据,我们可以使用线性搜索、二分查找、树查找、哈希查找等多种方法在该数据中搜索目标元素。
线性搜索 | 二分查找 | 树查找 | 哈希查找 | |
---|---|---|---|---|
查找元素 | O(n) | O(logn) | O(logn) | O(1) |
插入元素 | O(1) | O(n) | O(logn) | O(1) |
删除元素 | O(n) | O(n) | O(logn) | O(1) |
额外空间 | O(1) | O(1) | O(n) | O(n) |
数据预处理 | / | 排序 O(nlogn) | 建树 O(nlogn) | 建哈希表 O(n) |
数据是否有序 | 无序 | 有序 | 有序 | 无序 |
搜索算法的选择还取决于数据体量、搜索性能要求、数据查询与更新频率等。
线性搜索
- 通用性较好,无须任何数据预处理操作。假如我们仅需查询一次数据,那么其他三种方法的数据预处理的时间比线性搜索的时间还要更长。
- 适用于体量较小的数据,此情况下时间复杂度对效率影响较小。
- 适用于数据更新频率较高的场景,因为该方法不需要对数据进行任何额外维护。
二分查找
- 适用于大数据量的情况,效率表现稳定,最差时间复杂度为 O(logn) 。
- 数据量不能过大,因为存储数组需要连续的内存空间。
- 不适用于高频增删数据的场景,因为维护有序数组的开销较大。
哈希查找
- 适合对查询性能要求很高的场景,平均时间复杂度为 O(1) 。
- 不适合需要有序数据或范围查找的场景,因为哈希表无法维护数据的有序性。
- 对哈希函数和哈希冲突处理策略的依赖性较高,具有较大的性能劣化风险。
- 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突,从而提供良好的查询性能。
树查找
- 适用于海量数据,因为树节点在内存中是离散存储的。
- 适合需要维护有序数据或范围查找的场景。
- 在持续增删节点的过程中,二叉搜索树可能产生倾斜,时间复杂度劣化至 O(n) 。
- 若使用 AVL 树或红黑树,则各项操作可在 O(logn) 效率下稳定运行,但维护树平衡的操作会增加额外开销。