移除链表元素

题目链接

给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val == val 的节点,并返回 新的头节点

示例 1:

img

1
2
输入:head = [1,2,6,3,4,5,6], val = 6
输出:[1,2,3,4,5]

示例 2:

1
2
输入:head = [], val = 1
输出:[]

示例 3:

1
2
输入:head = [7,7,7,7], val = 7
输出:[]

提示:

  • 列表中的节点数目在范围 [0, 104]
  • 1 <= Node.val <= 50
  • 0 <= val <= 50

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#本人解法
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def removeElements(self, head: Optional[ListNode], val: int) -> Optional[ListNode]:
if head is None:
return None
a = []
while head:
if head.val != val:
a.append(head)
head = head.next
l = len(a)
if l == 0:
return None
for i in range(l - 1):
a[i].next = a[i + 1]
a[l - 1].next = None
return a[0]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def removeElements(self, head: Optional[ListNode], val: int) -> Optional[ListNode]:
if head is None:
return None
head.next = self.removeElements(head.next, val)
return head.next if head.val == val else head
# 链表的定义具有递归的性质,因此链表题目常可以用递归的方法求解。这道题要求
# 删除链表中所有节点值等于特定值的节点,可以用递归实现。对于给定的链表,
# 首先对除了头节点 head 以外的节点进行删除操作,然后判断 head 的节点值
# 是否等于给定的 val。如果 head 的节点值等于 val,则 head 需要被删除,
# 因此删除操作后的头节点为 head.next;如果 head 的节点值不等于 val,
# 则 head 保留,因此删除操作后的头节点还是 head。上述过程是一个递归的过程。
# 递归的终止条件是 head 为空,此时直接返回 head。当 head 不为空时,
# 递归地进行删除操作,然后判断 head 的节点值是否等于 val 并决定是否要删除 head。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 迭代
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def removeElements(self, head: Optional[ListNode], val: int) -> Optional[ListNode]:
dummy_head = ListNode(0, head)
cur = dummy_head
while cur.next:
if cur.next.val == val:
cur.next = cur.next.next
else:
cur = cur.next
return dummy_head.next

Go:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
//本人解法
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func removeElements(head *ListNode, val int) *ListNode {
if head == nil {
return nil
}
var a []*ListNode
for head != nil {
if head.Val != val {
a = append(a, head)
}
head = head.Next
}
l := len(a)
if l == 0 {
return nil
}
for i := 0; i < l-1; i++ {
a[i].Next = a[i+1]
}
a[l-1].Next = nil
return a[0]
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//递归
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func removeElements(head *ListNode, val int) *ListNode {
if head == nil {
return head
}
head.Next = removeElements(head.Next, val)
if head.Val == val {
return head.Next
} else {
return head
}
}

/*
链表的定义具有递归的性质,因此链表题目常可以用递归的方法求解。这道题要求 删除链表中所有节点值等于特定值的节点,可以用递归实现。对于给定的链表,首先对除了头节点 head 以外的节点进行删除操作,然后判断 head 的节点值是否等于给定的 val。如果 head 的节点值等于 val,则 head 需要被删除,因此删除操作后的头节点为 head.next;如果 head 的节点值不等于 val,则 head 保留,因此删除操作后的头节点还是 head。上述过程是一个递归的过程。递归的终止条件是 head 为空,此时直接返回 head。当 head 不为空时,递归地进行删除操作,然后判断 head 的节点值是否等于 val 并决定是否要删除 head。
*/
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//迭代
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func removeElements(head *ListNode, val int) *ListNode {
dummyHead := &ListNode{Next: head}
for tmp := dummyHead; tmp.Next != nil; {
if tmp.Next.Val == val {
tmp.Next = tmp.Next.Next
} else {
tmp = tmp.Next
}
}
return dummyHead.Next
}

设计链表

题目链接

你可以选择使用单链表或者双链表,设计并实现自己的链表。

单链表中的节点应该具备两个属性:valnextval 是当前节点的值,next 是指向下一个节点的指针/引用。

如果是双向链表,则还需要属性 prev 以指示链表中的上一个节点。假设链表中的所有节点下标从 0 开始。

实现 MyLinkedList 类:

  • MyLinkedList() 初始化 MyLinkedList 对象。
  • int get(int index) 获取链表中下标为 index 的节点的值。如果下标无效,则返回 -1
  • void addAtHead(int val) 将一个值为 val 的节点插入到链表中第一个元素之前。在插入完成后,新节点会成为链表的第一个节点。
  • void addAtTail(int val) 将一个值为 val 的节点追加到链表中作为链表的最后一个元素。
  • void addAtIndex(int index, int val) 将一个值为 val 的节点插入到链表中下标为 index 的节点之前。如果 index 等于链表的长度,那么该节点会被追加到链表的末尾。如果 index 比长度更大,该节点将 不会插入 到链表中。
  • void deleteAtIndex(int index) 如果下标有效,则删除链表中下标为 index 的节点。

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
输入
["MyLinkedList", "addAtHead", "addAtTail", "addAtIndex", "get", "deleteAtIndex", "get"]
[[], [1], [3], [1, 2], [1], [1], [1]]
输出
[null, null, null, null, 2, null, 3]

解释
MyLinkedList myLinkedList = new MyLinkedList();
myLinkedList.addAtHead(1);
myLinkedList.addAtTail(3);
myLinkedList.addAtIndex(1, 2); // 链表变为 1->2->3
myLinkedList.get(1); // 返回 2
myLinkedList.deleteAtIndex(1); // 现在,链表变为 1->3
myLinkedList.get(1); // 返回 3

提示:

  • 0 <= index, val <= 1000
  • 请不要使用内置的 LinkedList 库。
  • 调用 getaddAtHeadaddAtTailaddAtIndexdeleteAtIndex 的次数不超过 2000

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# class ListNode:
# def __init__(self, val):
# self.val = val
# self.next = None

class MyLinkedList:
def __init__(self):
self.size = 0
self.head = ListNode(0)

def get(self, index: int) -> int:
if index < 0 or index >= self.size:
return -1
cur = self.head
for _ in range(index + 1):
cur = cur.next
return cur.val

def addAtHead(self, val: int) -> None:
self.addAtIndex(0, val)
return

def addAtTail(self, val: int) -> None:
self.addAtIndex(self.size, val)
return

def addAtIndex(self, index: int, val: int) -> None:
if index > self.size:
return
self.size += 1
index = max(0, index)
cur = self.head
for _ in range(index):
cur = cur.next
add = ListNode(val)
add.next = cur.next
cur.next = add
return

def deleteAtIndex(self, index: int) -> None:
if index < 0 or index >= self.size:
return
self.size -= 1
cur = self.head
for _ in range(index):
cur = cur.next
cur.next = cur.next.next
return


# Your MyLinkedList object will be instantiated and called as such:
# obj = MyLinkedList()
# param_1 = obj.get(index)
# obj.addAtHead(val)
# obj.addAtTail(val)
# obj.addAtIndex(index,val)
# obj.deleteAtIndex(index)

Go:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// type ListNode struct {
// Val int
// Next *ListNode
// }

type MyLinkedList struct {
head *ListNode
size int
}

func Constructor() MyLinkedList {
return MyLinkedList{&ListNode{}, 0}
}

func (l *MyLinkedList) Get(index int) int {
if index < 0 || index >= l.size {
return -1
}
cur := l.head
for i := 0; i <= index; i++ {
cur = cur.Next
}
return cur.Val
}

func (l *MyLinkedList) AddAtHead(val int) {
l.AddAtIndex(0, val)
}

func (l *MyLinkedList) AddAtTail(val int) {
l.AddAtIndex(l.size, val)
}

func (l *MyLinkedList) AddAtIndex(index, val int) {
if index > l.size {
return
}
index = max(index, 0)
l.size++
pred := l.head
for i := 0; i < index; i++ {
pred = pred.Next
}
toAdd := &ListNode{val, pred.Next}
pred.Next = toAdd
}

func (l *MyLinkedList) DeleteAtIndex(index int) {
if index < 0 || index >= l.size {
return
}
l.size--
pred := l.head
for i := 0; i < index; i++ {
pred = pred.Next
}
pred.Next = pred.Next.Next
}

func max(a, b int) int {
if b > a {
return b
}
return a
}


/**
* Your MyLinkedList object will be instantiated and called as such:
* obj := Constructor();
* param_1 := obj.Get(index);
* obj.AddAtHead(val);
* obj.AddAtTail(val);
* obj.AddAtIndex(index,val);
* obj.DeleteAtIndex(index);
*/

反转链表

题目链接

给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。

示例 1:

1
2
输入:head = [1,2,3,4,5]
输出:[5,4,3,2,1]

示例 2:

1
2
输入:head = [1,2]
输出:[2,1]

示例 3:

1
2
输入:head = []
输出:[]

提示:

  • 链表中节点的数目范围是 [0, 5000]
  • -5000 <= Node.val <= 5000

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
#本人解法
class Solution:
def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
a = []
if head is None:
return None
while head:
a.append(head)
head = head.next
for i in range(len(a) - 1, 0, -1):
a[i].next = a[i - 1]
a[0].next = None
return a[-1]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#迭代解法
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
pre = None
cur = head
while cur:
tmp = cur.next
cur.next = pre
pre = cur
cur = tmp
return pre

Go:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//本人解法
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func reverseList(head *ListNode) *ListNode {
var a []*ListNode
if head == nil {
return nil
}
for head != nil {
a = append(a, head)
head = head.Next
}
for i := len(a) - 1; i > 0; i-- {
a[i].Next = a[i-1]
}
a[0].Next = nil
return a[len(a)-1]
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//官方解法
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func reverseList(head *ListNode) *ListNode {
var prev *ListNode
curr := head
for curr != nil {
next := curr.Next
curr.Next = prev
prev = curr
curr = next
}
return prev
}

两两交换链表中的节点

题目链接

给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换)。

示例 1:

swap_ex1

1
2
输入:head = [1,2,3,4]
输出:[2,1,4,3]

示例 2:

1
2
输入:head = []
输出:[]

示例 3:

1
2
输入:head = [1]
输出:[1]

提示:

  • 链表中节点的数目在范围 [0, 100]
  • 0 <= Node.val <= 100

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 递归法
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def swapPairs(self, head: ListNode) -> ListNode:
if not head or not head.next:
return head
newHead = head.next
head.next = self.swapPairs(newHead.next)
newHead.next = head
return newHead
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 迭代法
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def swapPairs(self, head: Optional[ListNode]) -> Optional[ListNode]:
dummy_head = ListNode(0, head)
tmp = dummy_head
while tmp.next and tmp.next.next:
node1 = tmp.next
node2 = node1.next
tmp.next = node2
node1.next = node2.next
node2.next = node1
tmp=node1
return dummy_head.next

Go:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
//递归法
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func swapPairs(head *ListNode) *ListNode {
if head == nil || head.Next == nil {
return head
}
newHead := head.Next
head.Next = swapPairs(newHead.Next)
newHead.Next = head
return newHead
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
//迭代法
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func swapPairs(head *ListNode) *ListNode {
dummyHead := &ListNode{0, head}
temp := dummyHead
for temp.Next != nil && temp.Next.Next != nil {
node1 := temp.Next
node2 := temp.Next.Next
temp.Next = node2
node1.Next = node2.Next
node2.Next = node1
temp = node1
}
return dummyHead.Next
}

删除链表的倒数第 N 个结点

题目链接

给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。

示例 1:

image-20231115162022904

1
2
输入:head = [1,2,3,4,5], n = 2
输出:[1,2,3,5]

示例 2:

1
2
输入:head = [1], n = 1
输出:[]

示例 3:

1
2
输入:head = [1,2], n = 1
输出:[1]

提示:

  • 链表中结点的数目为 sz
  • 1 <= sz <= 30
  • 0 <= Node.val <= 100
  • 1 <= n <= sz

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# 虚拟头结点
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def removeNthFromEnd(self, head: Optional[ListNode], n: int) -> Optional[ListNode]:
k = -1
dummy_head = ListNode(0, head)
tmp = dummy_head
while tmp:
k += 1
tmp = tmp.next
tmp = dummy_head
for i in range(k - n):
tmp = tmp.next
tmp.next = tmp.next.next
return dummy_head.next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# 双指针法(对称)
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode:
dummy = ListNode(0, head)
first = head
second = dummy
for i in range(n):
first = first.next

while first:
first = first.next
second = second.next

second.next = second.next.next
return dummy.next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 列表
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def removeNthFromEnd(self, head: Optional[ListNode], n: int) -> Optional[ListNode]:
nodes = []
dummy = ListNode(0, head)
node = dummy
while node:
nodes.append(node)
node = node.next
prev = nodes[len(nodes) - 1 - n]
prev.next = prev.next.next
return dummy.next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# 列表
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def removeNthFromEnd(self, head: Optional[ListNode], n: int) -> Optional[ListNode]:
a = []
while head:
a.append(head)
head = head.next
a.pop(len(a) - n)
for i in range(len(a) - 1):
a[i].next = a[i + 1]
if len(a) == 0:
return None
a[len(a) - 1].next = None
return a[0]

Go:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
//使用虚拟头结点
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func removeNthFromEnd(head *ListNode, n int) *ListNode {
k := -1
dummyHead := &ListNode{0, head}
for tmp := dummyHead; tmp != nil; tmp = tmp.Next {
k++
}
tmp := dummyHead
for i := 0; i < k-n; i++ {
tmp = tmp.Next
}
tmp.Next = tmp.Next.Next
return dummyHead.Next
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// 双指针法
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func removeNthFromEnd(head *ListNode, n int) *ListNode {
dummy := &ListNode{0, head}
first, second := head, dummy
for i := 0; i < n; i++ {
first = first.Next
}
for ; first != nil; first = first.Next {
second = second.Next
}
second.Next = second.Next.Next
return dummy.Next
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
//数组
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func removeNthFromEnd(head *ListNode, n int) *ListNode {
nodes := make([]*ListNode, 0)
dummy := &ListNode{0, head}
for node := dummy; node != nil; node = node.Next {
nodes = append(nodes, node)
}
prev := nodes[len(nodes)-1-n]
prev.Next = prev.Next.Next
return dummy.Next
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
//数组
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func removeNthFromEnd(head *ListNode, n int) *ListNode {
a := make([]*ListNode, 0)
for head != nil {
a = append(a, head)
head = head.Next
}
a = append(a[:len(a)-n], a[len(a)-n+1:]...)
for i := 0; i < len(a)-1; i++ {
a[i].Next = a[i+1]
}
if len(a) == 0 {
return nil
}
a[len(a)-1].Next = nil
return a[0]
}

相交链表

题目链接

给你两个单链表的头节点 headAheadB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null

图示两个链表在节点 c1 开始相交

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# 哈希表
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None

class Solution:
def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode:
hash_map = {}
curr = headA
while curr:
hash_map[curr] = True
curr = curr.next

curr = headB
while curr:
if curr in hash_map:
return curr
curr = curr.next

return None

1
2
3
4
5
6
7
8
9
10
11
12
13
14
#双指针
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None

class Solution:
def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode:
A, B = headA, headB
while A != B:
A = A.next if A else headB
B = B.next if B else headA
return A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# 数组(耗时高,不推荐)
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None

class Solution:
def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode:
arr=[]
curr = headA
while curr:
arr.append(curr)
curr = curr.next

curr = headB
while curr:
if curr in arr:
return curr
curr = curr.next

return None

Go:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
//哈希表
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func getIntersectionNode(headA, headB *ListNode) *ListNode {
vis := map[*ListNode]bool{}
for tmp := headA; tmp != nil; tmp = tmp.Next {
vis[tmp] = true
}
for tmp := headB; tmp != nil; tmp = tmp.Next {
if vis[tmp] {
return tmp
}
}
return nil
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
//双指针
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func getIntersectionNode(headA, headB *ListNode) *ListNode {
a, b := headA, headB
for a != b {
if a != nil {
a = a.Next
} else {
a = headB
}
if b != nil {
b = b.Next
} else {
b = headA
}
}
return a
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//数组(耗时高,不推荐)
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func getIntersectionNode(headA, headB *ListNode) *ListNode {
var vis []*ListNode
for tmp := headA; tmp != nil; tmp = tmp.Next {
vis = append(vis, tmp)
}
for tmp := headB; tmp != nil; tmp = tmp.Next {
for i := 0; i < len(vis); i++ {
if tmp == vis[i] {
return tmp
}
}
}
return nil
}

环形链表

题目链接

给你一个链表的头节点 head ,判断链表中是否有环。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。注意:pos 不作为参数进行传递 。仅仅是为了标识链表的实际情况。

如果链表中存在环 ,则返回 true 。 否则,返回 false

示例 1:

image-20231116131946732

1
2
3
输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

image-20231116132004857

1
2
3
输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

image-20231116132014318

1
2
3
输入:head = [1], pos = -1
输出:false
解释:链表中没有环。

提示:

  • 链表中节点的数目范围是 [0, 104]
  • -10^5 <= Node.val <= 10^5
  • pos-1 或者链表中的一个 有效索引

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# 内存少
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None

class Solution:
def hasCycle(self, head: Optional[ListNode]) -> bool:
num = 10**5 + 1
tmp = head
while tmp:
if tmp.val == num:
return True
else:
tmp.val = num
tmp = tmp.next
return False

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 哈希表
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None

class Solution:
def hasCycle(self, head: Optional[ListNode]) -> bool:
vis = {}
tmp = head
while tmp:
if tmp not in vis.keys():
vis[tmp] = True
else:
return True
tmp = tmp.next
return False
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 双指针法
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None

class Solution:
def hasCycle(self, head: Optional[ListNode]) -> bool:
slow = fast = head # 乌龟和兔子同时从起点出发
while fast and fast.next:
slow = slow.next # 乌龟走一步
fast = fast.next.next # 兔子走两步
if fast is slow: # 兔子追上乌龟(套圈),说明有环
return True
return False # 访问到了链表末尾,无环
# 兔子会不会「跳过」乌龟,从来不会和乌龟相遇呢?
# 这是不可能的。如果有环的话,那么兔子和乌龟都会进入环中。这时用「相对速度」思考,乌龟不动,兔子相对乌龟每次只走一步,这样就可以看出兔子一定会和乌龟相遇了。

Go:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
//内存少
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/

import "math"

func hasCycle(head *ListNode) bool {
num := int(math.Pow(10, 5) + 1)
for tmp := head; tmp != nil; tmp = tmp.Next {
if tmp.Val == num {
return true
} else {
tmp.Val = num
}
}
return false
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//哈希表
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func hasCycle(head *ListNode) bool {
vis := make(map[*ListNode]bool)
for tmp := head; tmp != nil; tmp = tmp.Next {
if ok := vis[tmp]; !ok {
vis[tmp] = true
} else {
return true
}
}
return false
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// 双指针法
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/

func hasCycle(head *ListNode) bool {
slow, fast := head, head
for fast != nil && fast.Next != nil {
slow = slow.Next
fast = fast.Next.Next
if fast == slow {
return true
}
}
return false
}

环形链表 II

题目链接

给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos-1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

不允许修改 链表。

示例 1:

image-20231116131946732

1
2
3
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

image-20231116132004857

1
2
3
输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

image-20231116132014318

1
2
3
输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。

提示:

  • 链表中节点的数目范围在范围 [0, 104]
  • -105 <= Node.val <= 105
  • pos 的值为 -1 或者链表中的一个有效索引

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 本人解法
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None

class Solution:
def detectCycle(self, head: Optional[ListNode]) -> Optional[ListNode]:
num = 10**5 + 1
tmp = head
while tmp:
if tmp.val == num:
return tmp
else:
tmp.val = num
tmp = tmp.next
return None
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 哈希表
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None

class Solution:
def detectCycle(self, head: Optional[ListNode]) -> Optional[ListNode]:
vis = {}
tmp = head
while tmp:
if tmp not in vis.keys():
vis[tmp] = True
else:
return tmp
tmp = tmp.next
return None
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# 双指针法,其实就将这道题变成了数学题
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None

class Solution:
def detectCycle(self, head: Optional[ListNode]) -> Optional[ListNode]:
slow = fast = head
while fast and fast.next:
slow = slow.next
fast = fast.next.next
if fast is slow:
while slow is not head:
slow = slow.next
head = head.next
return slow
return None

Go:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
//本人解法
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
import "math"

func detectCycle(head *ListNode) *ListNode {
num := int(math.Pow(10, 5) + 1)
for tmp := head; tmp != nil; tmp = tmp.Next {
if tmp.Val == num {
return tmp
} else {
tmp.Val = num
}
}
return nil
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//哈希表
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func detectCycle(head *ListNode) *ListNode {
vis := make(map[*ListNode]bool)
for tmp := head; tmp != nil; tmp = tmp.Next {
if ok := vis[tmp]; !ok {
vis[tmp] = true
} else {
return tmp
}
}
return nil
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//双指针法
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func detectCycle(head *ListNode) *ListNode {
slow, fast := head, head
for fast != nil && fast.Next != nil {
slow = slow.Next
fast = fast.Next.Next
if fast == slow {
for slow != head {
slow = slow.Next
head = head.Next
}
return slow
}
}
return nil
}