翻转二叉树

题目链接

给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。

示例 1:

image-20231207145332634

1
2
输入:root = [4,2,7,1,3,6,9]
输出:[4,7,2,9,6,3,1]

示例 2:

image-20231207145348407

1
2
输入:root = [2,1,3]
输出:[2,3,1]

示例 3:

1
2
输入:root = []
输出:[]

提示:

  • 树中节点数目范围在 [0, 100]
  • -100 <= Node.val <= 100

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
# 递归法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
if not root:
return None
root.right, root.left = self.invertTree(root.left), self.invertTree(root.right)
return root
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# 层序遍历
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
if root is None:
return None

q = [root]
while q:
tmp = q
q = []
for node in tmp:
node.left, node.right = node.right, node.left
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)

return root

Go:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
//递归法
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func invertTree(root *TreeNode) *TreeNode {
if root == nil {
return nil
}
root.Left, root.Right = invertTree(root.Right), invertTree(root.Left)
return root
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
//层序遍历
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func invertTree(root *TreeNode) *TreeNode {
if root == nil {
return nil
}
q := []*TreeNode{root}
for len(q) > 0 {
tmp := q
q = nil
for _, node := range tmp {
node.Left, node.Right = node.Right, node.Left
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
}
return root
}

对称二叉树

题目链接

给你一个二叉树的根节点 root , 检查它是否轴对称。

示例 1:

image-20231207155145369

1
2
输入:root = [1,2,2,3,4,4,3]
输出:true

示例 2:

image-20231207155153003

1
2
输入:root = [1,2,2,null,3,null,3]
输出:false

提示:

  • 树中节点数目在范围 [1, 1000]
  • -100 <= Node.val <= 100

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# 对称二叉树定义: 对于树中 任意两个对称节点 L 和 R ,一定有:
# L.val = R.val :即此两对称节点值相等。
# L.left.val = R.right.val :即 LLL 的 左子节点 和 RRR 的 右子节点 对称。
# L.right.val = R.left.val :即 LLL 的 右子节点 和 RRR 的 左子节点 对称

# 递归法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSymmetric(self, root: Optional[TreeNode]) -> bool:
def check(p: TreeNode, q: TreeNode):
if not p and not q:
return True
if not p or not q:
return False
return p.val == q.val and check(p.left, q.right) and check(p.right, q.left)

return check(root, root)

Go:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
//对称二叉树定义: 对于树中 任意两个对称节点 L 和 R ,一定有:
//L.val = R.val :即此两对称节点值相等。
//L.left.val = R.right.val :即 LLL 的 左子节点 和 RRR 的 右子节点 对称。
//L.right.val = R.left.val :即 LLL 的 右子节点 和 RRR 的 左子节点 对称

//递归法
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isSymmetric(root *TreeNode) bool {
return check(root, root)
}

func check(p, q *TreeNode) bool {
if p == nil && q == nil {
return true
}
if p == nil || q == nil {
return false
}
return p.Val == q.Val && check(p.Left, q.Right) && check(p.Right, q.Left)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
//迭代法
func isSymmetric(root *TreeNode) bool {
if root == nil {
return true
}
q := []*TreeNode{root, root}

for len(q) > 0 {
node1 := q[0]
node2 := q[1]
q = q[2:]

if node1 == nil && node2 == nil {
continue
}

if node1 == nil || node2 == nil {
return false
}

if node1.Val != node2.Val {
return false
}

q = append(q, node1.Left, node2.Right, node1.Right, node2.Left)
}

return true
}